
Journal of  Statistical Physics, Vol. 76, Nos. 5/6, 1994 

Finite-Size Effects for Phase Segregation in a 
Two-Dimensional Asymmetric Exclusion Model 
with Two Species 

D. P. Foster ~ and C. Godr6che ~ 

Received November 4, 1993; final March 8, 1994 

We investigate the stationary states of a two-dimensional lattice gas model with 
exclusion, in the presence of an external field. The lattice is populated by equal 
numbers of positively and negatively charged particles. An analytical mean-field 
approach and Monte Carlo simulations give strong evidence of the fact that at 
any finite density the only relevant stationary state of the system in the thermo- 
dynamic limit is inhomogeneous, consisting of a strip of particles transverse 
to the field. In the inhomogeneous phase, the density profiles and the current 
measured by Monte Carlo simulations are closely related to those found in 
mean field. The same is true for the finite-size behavior of the system. 

KEY WORDS: Stochastic lattice gas; excluded volume; steady states; phase 
segregation. 

1. INTRODUCTION 

Asymmet r ic  exclus ion models  are s imple real iza t ions  of d r iven  diffusive 
lattice gases, which themselves  provide  s imple  examples  of n o n e q u i l i b r i u m  
systems t~ (see refs. 2 for review). In  these models ,  part icles on  a lattice hop  
in a preferred d i rec t ion  with s tochast ic  dynamics  and  excluded vo lume  
interact ions.  

A n u m b e r  of such models  have been s tudied recently, t3-9~ Mos t  of the 
cases cons idered  are one -d imens iona l ,  whether  with one  or  two species of 
particles and  with. var ious  types of b o u n d a r y  condi t ions ,  often pe rmi t t ing  
an  exact  d e t e r m i n a t i o n  of the s teady state. 
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We consider here the more difficult situation of a two-dimensional 
asymmetric exclusion model with two species of particles. Consider a square 
lattice at 45 'deg to the axes, with N =  Lx x L.,. sites (Fig. 1) and periodic 
boundary conditions in both directions. This lattice is populated by equal 
numbers of particles of two species, which for simplicity we will call 
positive and negative. These particles are subjected to a uniform field E 
pointing in the positive x direction. Each site of the lattice is either 
occupied by one particle (positive or negative) or empty. We define two 
occupation variables: T M = 1 if site M is occupied by a positive particle and 
z M = 0 if not. Similarly ~M = 1 or 0 if site M is occupied by a negative 
particle or not. The excluded volume condition imposes that only one of 
the two occupation variables may be nonzero at a time. Hence the occupa- 
tion variable for holes 1 - z M -  ~M is equal to 1 if site M is empty and to 
0 if site M is occupied by one particle of either sign. 

The dynamics of the system is defined as follows. During an 
infinitesimal time interval dt a site M is chosen at random. If it is occupied 
by a positive particle, this particle hops with probability a/2 onto one or 
the other of the two neighboring sites in the forward direction, and with 
probability b/2 onto one or the other of the two neighboring sites in the 
backward direction (a + b = 1), if the selected neighboring site is empty. If 
site M is occupied by a negative particle, the same procedure is followed 
with a and b interchanged. One may relate the probabilities a and b to 
the field as follows: a = e x p E / [ e x p E + e x p ( - E ) ]  and b = e x p ( - E ) /  
[exp E +  exp( - E ) ] ;  hence a -  b = tanh E. 

This model is, up to a slight geometrical modification, that introduced 
in ref. 6. Through Monte Carlo simulations, Schmittmann et al. observed, 
for each finite size and when the density of particles is increased, a tran- 
sition between a homogeneous phase, where all the particles are randomly 
distributed over the lattice with a uniform density, and an inhomogeneous 
"blocked" phase, consisting of a strip of particles transverse to the field. 
The left (right) half of the strip is mainly made of + ( - )  particles, each half 
forming a barrier for the other. Hence, in such a phase the current is much 
lower than in the homogeneous phase; however, it is nonzero for any finite 
size. 

While it is intuitive that such a "blocking" transition should take place 
for a sufficiently high density, it is unclear how it depends on system size. 
As pointed out in ref. 6, one may wonder whether this transition survives 
in the thermodynamic limit. 

In this paper we attempt to answer this question. We first consider a 
mean-field approach to the problem. The equations for the stationary 
states possess localized solutions, whose analytical expressions are given in 
the continuum limit. We discuss which solution is selected for given finite 
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size and density of particles. Finite-size effects enter via a simple scaling 
function. This permits us to show that, in mean field, the inhomogeneous 
phase exists down to zero density, in the thermodynamic limit. 

Mean-field theory provides a framework for the analysis of the 
behavior of the real system, given by Monte Carlo simulations. We find that 
the main characteristics of the mean-field approximation are still present in 
the real system. In particular its scaling behavior is closely related to that 
found in mean field. We are finally led to the conclusion that, for any 
finite density, the stationary state of the system is inhomogeneous in the 
thermodynamic limit. As a consequence, the transition disappears in this 
limit. 

2. EQUATIONS OF THE MODEL A N D  
MEAN-F IELD A P P R O X I M A T I O N  

The dynamical rules of the model given above allow us to derive. 
equations for the time evolution of the average occupation variables. 

Let us consider the occupation of site M by a positive particle. The 
two sites forward to M are denoted A and B, and the two backward C 
and D (see Fig. 1 ). Given a configuration cg, of the system at time t, 
characterized by the 2N occupation variables {rt ..... rN; r ..... ~N}, the 
probability of having {rM(t+dt)=l} is obtained by summing the 
probabilities of the following events: 

v 

Fig. 1. Geometrical setting of the model. The field E points in the positive x direction. 

822/76/5-6-3 
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(i) Neither site M or its neighboring sites are updated; site M is 
occupied by a positive particle. This occurs with probability 

rM(/)(1 -- 5dt) (2.1) 

(ii) Site M is updated; it is occupied by a positive particle; the 
neighboring sites are occupied. This occurs with probability 

ZM(t){ [zA(t) + ~A(t) + zs(t) + ~s(t)] a/2 

+ [ rc ( t )  + r + to(t) + ~o(t)] b/2} dt (2.2) 

(iii) One of the neighbors of site M is updated; site M is empty; the 
updated site is occupied by a positive particle which hops onto site M. This 
occurs with probability 

[1 --rM(t)--~M(t)]{ErA(t)+zn(t)] b/2+ [tc(t)+~o(t)] a/2} dt (2.3) 

(iv) One of the neighbors of site M is updated; site M is occupied by 
a positive particle. This occurs with probability 

4TM(t) dt (2.4) 

Denoting by 0 = 1 - z - ~ the occupation variable for holes and averaging 
on the configurations cg, leads to 

d(rM)/dt = - (azM(OA + On)~2-- b(zA + zn) Ore~2) 

+(a(Zc+Zo) OM/2--b~M(Oc+Oo)/2) (2.5) 

The equation for the evolution of (~M) is found in a similar fashion: 

d( r = - ( b~M(O A + Os)/2- a(~A + ~s) Oral 2) 

+(b(~c+~o)  OM/2--a~M(Oc+Oo)/2) (2.6) 

These equations indicate that the rates of change of the densities (~M) and 
(~M) are given by the difference of currents in and out of site M. Due to 
the symmetry of the problem, one expects that these currents will not 
depend on the y coordinate. For instance, (rMOA) should be equal to 
(rmOs). However, this symmetry does not reduce the model to a one- 
dimensional problem, since the time evolution of two-variable correlations 
depends upon three-variable correlations and so on, which restores the 
two-dimensional geometry. Therefore the level of complexity of this 
problem is higher than its corresponding one-dimensional version, whose 
exact stationary state may be computed by the methods of ref. 4. 
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Let us then consider a mean-field approximation to these equations. 
It consists in neglecting correlations between occupation variables. The 
equations are now only labeled by one (integer) coordinate i along the x 
direction and the problem is reduced to a one-dimensional problem with 
size Lx. We will therefore use the language of one-dimensional geometry, 
though a "site" should be understood as a column of the original two- 
dimensional lattice. 

Setting p ;=  (%)  (density of positive particles), m~= (~ ; )  (density of 
negative particles), the evolution equations read 

dp, 
-g-f= - t / :  - / L  I) 

(2.7) 
d m ~  

d t  = - ( J 7  - J T -  i ) 

where 

j ~  = a p , (  l - -  p , +  , - -  m , +  , ) - -  b p , +  ,(1 - p , -  m , )  
(2.8) 

J 7  = b m i ( 1  - P i +  l - m i +  l)  - a m i +  l (1  - -  P i - - r a g )  

are the mass currents of positive and negative particles. These equations 
should be supplemented by the normalization conditions: 

L.~ Lx 

p i  = ~ m , = ~ L x  (2.9) 
i = 1  i = l  

where ~ is the mean density of each species. 
Given an initial condition, the system reaches a steady state when 

t ~ ~ ,  for which the left-hand sides of Eqs. (2.7) vanish, implying that the 
currents (2.8) are conserved. In the following we will investigate the 
structure of these steady states by studying the solutions of the following 
discrete nonlinear mapping: 

ap~(1  - p~+ ~ - - m r +  l ) - - b p ~ +  l ( l  - -p~- -m~)=j+  
(2.1o) 

b m i ( 1  - P i+  i - m i +  l)  - a m i +  l(  l - P i -  m i )  = j -  

These equations have both homogeneous and inhomogeneous solutions, 
which we will consider in turn. 

3. STEADY-ST.ATE S O L U T I O N S  OF M E A N - F I E L D  E Q U A T I O N S  

3.1. Homogeneous  Solut ions 

A homogeneous phase (p~ = mi = p for all i) is a steady-state solution 
of the mean-field equations. It is a fixed point both of the temporal equa- 
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tions (2.7) and of the equations for the steady state (2.10). In this state 
t5 = p and the currents for each species are 

j+  = - - j -  = ( a - b )  p(1 - 2 p )  (3.1) 

One observes by numerical integration of Eqs. (2.7) that, starting from a 
slightly per turbed homogeneous  phase, this fixed point  is stable as long 
as p ~< 1/4. This observat ion may  be made rigorous by a linear stability 
analysis of these equations. 

Indeed, let us consider a small per turbat ion to the homogeneous  state: 

p , ( t )=p+e~( t )  

mi ( t )= p + rli(t) 
(3.2) 

Due to the translational invariance of the homogeneous  solution, 8i(t) and 
q~(t) should be propor t ional  to the product  of  a t ime-dependent  ampli tude 
by a plane wave, the wave vector of which is given by q = 2nm/Lx (m integer) 
in order to fulfill periodic boundary  conditions. F rom Eqs. (2.7) one gets 

( de(t)/dt~ M(q)(e(t)) 
dq(t)/dtJ = \ q ( t ) J  

(3.3) 

where M(q) is a matrix whose entries are 

Ml2 = p{a[exp(iq) -- 1] + b [ e x p ( - i q )  + 1] } 

1 - 2 p  
M11 = MI2 + M * 2 - -  

P 

M21 = M*2 

M22 = M *l 

(3.4) 

(asterisk denotes complex conjugation).  Its trace and determinant  are 

Tr  M = 2 ( 1 - p ) ( c o s  q -  1) 

det M = ( 1 - 2p) [ (cos  q - 1 )2 + ( 1 - 4p) (a  - b) 2 sin 2 q'] 
(3.5) 

Finally the eigenvalues of M(q) read 

A + = {Tr M__. [ (Tr  M )  2 - 4 det M ]  ~/2 }/2 

= (1 - p)(cos q -  1 ) +  ['p2(1 --COS q)2 

- (1 -- 2p)(1 - 4 p ) ( a - b )  2 sin 2 q]l/2 (3.6) 
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Since the trace is negative, the real part of the larger eigenvalue can be 
positive only if the determinant is negative, which occurs when ,o > 
1/4 + tan2(q/2)/4(a-b) 2. The first unstable mode is q =  2n/L,.. Hence the 
homogeneous solution is unstable to small perturbations if 

0> 4 1-t (a-b)Z L~ . (3.7) 

This result is given in ref. 6. 

3.2.  I n h o m o g e n e o u s  S o l u t i o n s  

(i) Given a size Lx and a mean density ~, it is easy to obtain 
inhomogeneous stationary solutions of Eqs. (2.7) by numerical integration. 
If the mean density ,0 is not too small, and for an inhomogeneous initial 
condition, one observes that, e.g., the density profile p~ of the positive 
particles in the stationary state is the superposition of a localized solu- 
tion, i.e., a bell-shaped curve around the blocking strip and a background 
density denoted by p. (See, e.g., Fig. 3.) 

(ii) It is possible to get a hint of the existence of such localized 
solutions by a linear stability analysis of Eqs. (2.10) with respect to a 
perturbation of the homogeneous solution. Setting 

in Eqs. (2.10) leads to 

p i=p+e i  

m i =  p + rli 
(3.8) 

( ei+l']=M'(e') (3.9) 
qi+ I,] qi 

where 

M ' =  1 (B2 -a2p  2 - ( a - b ) p  2) 
A B - a b p 2 k ( a - b ) p  2 A2-b2p  2 J 

with 

A = a p + b ( 1 - 2 p )  

B=bp  + a ( 1 -  2p) 

Since M '  has a determinant equal to 1, its eigenvalues are 

(3.10) 

(3.11) 

2• = {Tr M ' +  E(Tr M' )  2 - 4]~/2}/2 (3.12) 
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It is convenient to set Tr M ' =  2 cosh/~, which yields 

1 1 + (a - b)(1 - -  4/9) 1/2 
2+ = ~-_ = exp/~ = I - ( a -  b)(1 - 4 p )  '/2 (3.13) 

Defining 

tanh E ' =  (1 - - 4 p )  w2 tanh E (3.14) 

one gets/~ = 2E'. Hence, when a -  b (= t anh  E) is small,/~ ~ 2E( 1 - 4 0 )  1/2. 
Since e .̀ and q .̀ are linear combinations of (2+)" and (2_) ~, we can 

draw the following conclusions. When p ~< 1/4 one has 2+ > 1 and 2_ < 1, 
i.e., the fixed point p ~ = m ~ = p  is hyperbolic: iterating the mapping (2.10) 
takes the solution exponentially rapidly away from the fixed-point solution. 
When p is larger than 1/4 both eigenvalues are complex with unit modulus, 
the fixed point is elliptic: the perturbed solution oscillates around the fixed 
point. 

This instability of the homogeneous solution for p ~< 1/4 is the reflec- 
tion of the presence of an inhomogeneous solution of the mapping (2.10). 
Starting from the fixed point p`. = p, p`. is driven away from it exponentially, 
as long as p <~ 1/4. The drift is governed by )~+ for the positive i direction 
and by 2_ = 1/2+ for the negative one. 

This exponential drift may be simply interpreted as the rise of the 
profile starting from the background density p, which then saturates by 
nonlinear effects, followed by an exponential decay of the profile, which 
returns to the fixed point p. 

As a consequence, the current in the inhomogeneous phase (j+ in this 
example) is, up to exponential corrections, given by the same formula as in 
the homogeneous case, namely j + = ( a - b ) p ( 1  - 2 p ) .  However, whereas p 
and # are identical in the homogeneous phase, this is not the case here [see 
Eq. (4.1) below]. This remark is a key point of the analysis that follows. 

The stability analysis of the mapping (2.10) in the space of stationary 
solutions done here is in no way contradictory "with the conclusion of the 
stability analysis done in Section 3.1 on the temporal mean-field equations 
(2.7). The same situation occurs in different contexts, tm~ 

(iii) We now give an analytical description of the density profiles in 
the continuum limit of Eqs. (2.10). Let us first transform these equations by 
introducing combinations of p~ and mr with a given parity. We define 

g i = P i - - r n i  (3.15) 

h i  = 1 - P i  - m i  
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where gi is the charge density and hi is the hole density, simply related to 
the local mass density p; + mi. To these quantities correspond respectively 
a charge current j § - j -  and a mass current j § + j - .  The latter is zero, by 
symmetry. (See ref. 6 for similar considerations.) Setting 

1 a - b  1 a - b  
a = 2 + T ;  b = 2  2 (3.16) 

we find that the equations for the stationary state read 

(hi+ ~ - hi)/2 + (a - b)(gihi+ l + gi+ ~hi)/2 

= j+ + j -  = 0  
(3.17) 

(gihi+ , - gi+ ~hi)/2 + ( a - b ) [ ( 1  - h i )  h,+ , + (1 - h i + t )  hi]~2 

= j +  - j -  = 2 j  + 

where j+  = ( a -  b) p(1 - 2p). 
Finding the localized solutions of this discrete mapping is a difficult 

analytical problem. We therefore consider the continuum limit of these 
equations. In order to do so we take a - b  ~ E small and of the order 
of the lattice spacing (taken equal to 1 here). In this case Pi+~ may be 
approximated by p(x )  + p ' ( x )  and any higher-order derivative or any term 
proportional to the product of ( a - b )  by a first-order derivative should be 
neglected. We thus get 

h'/2 + ( a - b )  gh = 0  
(3.18) 

(gh' - g'h)/2 + (a - b)(1 - h) h = 2(a - b) p(l  - 2p) 

where g and h are symmetric functions of x with respect to the origin 
(primes denote derivatives with respect to the x coordinate). These equa- 
tions describe an infinite system with boundary conditions p(_+oo)= 
m ( _ o o ) = p .  

Introducing the rescaled variable 2 ( a - b ) x ,  we find that these 
equations read 

h ' + g h = O  
(3.19) 

g h ' -  g'h + (1 - h) h = 2p(1 - 2p) 

Primes denote derivative with respect to the new coordinate. Note that we 
use the same notations for the profiles after rescaling of the variable. It is 
now easy to eliminate one of the two functions. Defining 

1 1 
w = (3.20) 

h h ( ~ )  
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where h ( ~ ) =  1 - 2 p ,  one finally gets a single second-order equation 

w"= (1 - 4 p )  w--2p(1--2p)  w 2 (3.21) 

with w(oo)= w ' ( ~ ) = 0  and w'(0)=0. Integrating once gives 

2 W 2 W 3 

w'2 = (1 - 4p) -~--  2p(1 - 2p) -~- (3.22) 

which determines 

3(1 --4p) 
w(O) (3.23) 

4p(1 --2p) 

Note that Eq. (3.22) does not contain any integration constant, due to 
the boundary conditions. Setting ( = 2 ( a - b ) ( 1 - 4 p ) l / 2 x ,  we find that 
Eq. (3.22) leads to 

dw ( _ w__e_ ),,2 
--~= +_w 1 w(O)/ (3.24) 

The solution of this equation is 

2w(0) 
w(~) (3.25) 

1 +cosh 

which is an even function of its argument. We can now derive the relevant 
profiles: 

h , , ,  2p(1 - 2p)(1 + cosh ~) 

g(() = - 
3(1 - 4 p )  3/2 tanh 

3 - 10p + 2p cosh 

(3.26) 

from which p(() and m(() are easily found: 

p = ( 1 - h +  g)/2 

m = (1 - h - g)/2 
(3.27) 

Note that p ( - ( ) = m ( ( ) ,  as expected. Also 

1 
p(O)=m(O)= 

2 
2p(1 --2p) 

3 - 8 p  
(3.28) 
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Fig. 2. 

-20 -10 0 10 20 
2 ( a - b ) x  

Analytical continuum mean-field profile p + m for p = 0.2, 0.1, 0.001, plotted against 
2(a-b)x. 

As already mentioned,  p and m appear  as the superposi t ion of a constant  
background equal to p and a localized bump,  corresponding to the 
presence of the blocking strip of particles (Figs. 2 and 3). The area n(p) 
under the bump  is easily derived: 

f 
o c ,  

n(p) = [ p ( x ) - p ]  dx 
- -  o c ,  

~0 :~' 
= [p(x)+m(x)- -2p]  dx 

f 
, 

= [ h ( ~ ) -  h(x)]  dx 

f 
= [ 2 ( a -  b)(1 - 4 p )  '/2 ] -1 [ h ( ~ ) -  h ( ( ) ]  d~ r (3.29) 

n(p) is the excess ~number of layers over the background density/9. When 
p is small it gives a faithful measure of the number  of layers of one species 
in the strip. Noticing that  t~l~ 

f /  d( 0 (3.30) 
c o s h ~ + c o s h 0  s inh0  
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one obtains, with cosh 0 = (3 - lOp)/2p, 

2(a - b) n(p)  = 0( 1 - 2p)(1 - 8p/3) - 1/2 (3.31) 

which, in the limit of p ~ O, gives 

2(a - b) n(p) ~. ln(3/p) (3.32) 

In the vicinity of p = 1/4 the function f ( p ) = 2 ( a - b ) n ( p )  behaves as 
3(1 - 4 p )  I/2. As a consequence, n(1/4) = 0 and dn(p)/dp ~ - o o  for p ~ 1/4. 

We end this section by a compar ison  of the analytical predictions 
given above with the results obtained from numerical iterations of the dis- 
crete mapping  (2.10). Since the homogeneous  solution is unstable, one has 
to adjust the initial condit ion (hi0 and hi0-, ~ 1 - 2p)  in order to force the 
profile hi to be an even function of the coordinate  i. The analytical theory 
predicts that profiles as functions of 2 ( a - b ) x  or the function f ( p )  should 
only depend on p and not on the field, i.e., ( a - b ) .  Figure 3 gives the 
profiles p, m, and p + m  for p =0.001,  plotted against 2 ( a - b ) x ,  both for 
the cont inuum limit (3.27), and for the discrete case with a - b  = 0.2. The 
profiles are practically indistinguishable. This agreement  is less good when 
the field increases. This is clearly shown on Fig. 4, where f ( p )  is plotted 

1.0 

0.8 

0.6 -4- 

-0.4 

0.2 

+++++~. @,"o r 
.r : : t. 

f !./ ! 
.i I/ ! 

eo 

/ v ! 

/ ! 

.- ., ~ 

-20 - I0  0 I0 20 

2(~-b)x 
Fig. 3. Mean-field profiles p, m, and p+m for p=O.O01 plotted against 2(a-b)x for the 
continuum limit (continuous line) and for the discrete case (dots) with a - b  = 0 . 2  (p on the 
left, m on the right). 
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10 \ . . . . .  ,4 

8 ' - .  " . . "-.. " . N  - - - . 9 5  

6 " ~ -  " . . . .~  

4 . . . . . . . . .  ~ ' . .~ 

2 

0 i i 
- 1 2  - 1 0  - 8  - 6  - 4  - 2  0 

In p 

Fig. 4. Plot off(p)=2(a-b)n(p) against l n p  in mean field for the cont inuum limit 
(continuous line) and for different values of the field ( a - b  = 0.2, 0.4, 0.8, 0.9, 0.95, l)  for the 
discrete case. n(p) is the excess number  of layers over the background p. 

against In p for the continuum limit (3.31), and for the discrete case with 
a - b = 0 . 2 ,  0.4, 0.6, 0.8, 0.9, 0.95, 1. The logarithmic behavior o f f ( p )  for 
small p is still observed in the latter case. 

Remark. It is interesting to compare the results of this section to 
those given in ref. 6. In this work a phenomenoiogical approach is used in 
order to derive the continuum mean-field equations. Our equations (3.18) 
and (3.21) are identical to the equations given in ref. 6 if one identifies their 
coarse-grained 3 with 2 ( a - b ) ,  i.e., with the field. Note that here we 
parameterize the charge current by the background density p, i.e., by the 
asymptotic behavior of the localized solutions at infinity, whereas in ref. 6 
the charge current is fixed by the mean density and by the size of the 
system. The authors report that they found solutions of these equations in 
terms of elliptic integrals, which are the solutions of (3.21) for a finite 
system. 

4. FINITE-SIZE EFFECTS A N D  SCALING IN M E A N  FIELD 

The previous analysis assumed an infinite size. For any value of the 
background density p there exists a localized solution characterized by its 
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profiles and by the number of layers in the blocking strip. If the system is 
finite and the mean density ~ given, the question arises of determining 
which p is selected. 

From the definition of n(p), Eq. (3.29), one has, up to exponential 
corrections, the following relation between the mean density ~, the back- 
ground density p, and the number of layers in the blocking strip: 

n(p) 
p = p + - -  (4.1) 

L.,. 

In this problem finite-size effects only enter through this relation. Equa- 
tion (4.1) determines which p is selected for/~ and Lx given. It also gives 
the combination of observable quantities which should have a simple 
scaling behaviour, namely 

f ( p )  = 2(a -- b) n(p) 

= 2 ( a  - b )  L. , . ( I5 - p )  ( 4 . 2 )  

where p is given by j§ =(a-b)p(1-2p) (hereafter denoted by j). We 
report the comparison of this prediction with the results obtained by 
Monte Carlo simulations in Section 5. 

The possible solutions of (4.1) appear clearly on a plot of ~ as a func- 
tion of p for various values of the product (a-b)Lx (Fig. 5, continuum 

0.5 

Fig. 5. 

0.4 

I,::~ 

0.2 

0.1 

0 I = 
0.05 0.10 0.1,5 0.20 0.2,5 0,30 

P 
Plot of ~ as a function of p in the continuum mean-field theory for ( a -  b) L ,  = 8, 

10, 12, 14, 16, 18, 20, 100, 500 (top to bottom). 



mean-field). The homogeneous solution # = p is also plotted on this figure. 
The discussion hereafter is easily transcribed on a plot of j /(a-b) as a 
function of # (Fig. 6). When p is small,/5 is first a decreasing (logarithmic) 
function of p, along the inhomogeneous curve. It passes through a mini- 
mum value #c, for P=Pc, then increases, reaching the point 1/4 for 
p = 1/4 with infinite slope. In the current-density plot this corresponds to 
a terminal point C=(#c, jc/(a-b)) with infinite slope. Approximating 
n(p) by its logarithmic expression (3.32) and computing the derivative of 
# with respect to p, one gets 

1 
(4.3) Pc"~2(a_b) Lx 

which leads to 

#c  ~ P c ln(L x/const. ) (4.4) 

0.15 

Note the presence of another terminal point D on the right of the plot, 
where # is maximum. Again, in the current~lensity plot this corresponds 
to a terminal point D=(#o, jn/(a-b)) with infinite slope. Using the 
expansion of n(p) in the vicinity of p = 1/4, one gets 

,( 9 )  ,4,, 
# n = 4  l + ( a _ b )  2L~. 
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v 
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0.2 O.3 0.4 O.5 0 0.1 
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Fig. 6. Same as Fig. 5 forj/(a-b) as a function of# (right to left). 
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This expression closely resembles that given in Eq. (3.7), in agreement with 
the fact that the homogeneous and inhomogeneous solutions should match. 

Let us now discuss the possible solutions of Eq. (4.1) for /5 and Lx 
given. 

�9 If/5 </5c, only one value of p or j is selected, corresponding to the 
homogeneous solution. 

�9 If/5 >/sn, again only one value of/9 or j is selected, corresponding 
to the inhomogeneous solution. 

�9 If /5c </5 </50, three possible solutions for p or j are selected, two 
inhomogeneous, one homogeneous. In order to discriminate between them 
we need to know their stability. The linear stability analysis of the 
homogeneous solution was done above. We determined the stability of the 
inhomogeneous solution by numerical means. 

Numerical integration of the time-dependent equations (2.7) shows 
that in the /5-p plot (or current-density plot) the branch of the 
inhomogeneous solution with positive slope is never observed. The furthest 
point reached is the terminal point C. In other terms, if/5c </5 </50, the 
stationary solution reached is the homogeneous one if one starts with a 
homogeneous initial condition; it is the inhomogeneous one when starting 
from an inhomogeneous initial condition. 

We have no analytical proof of this instability of the inhomogeneous 
solution. Note that if such a branch existed, the current would increase 
with the density in the inhomogeneous phase. We can nevertheless give 
an interpretation of this instability, when P > P c ,  as follows. In the 
inhomogeneous phase, given L.~ and/5, the system selects a current, hence 
a value of p ( a - b  is kept fixed). Suppose /5 is decreased, Lx being fixed: 
p increases up to Pc. At this point the stable solution becomes the 
homogeneous one. The inhomogeneous solution appears as a small pertur- 
bation of a homogeneous one. One may also look at the same problem 
from a different angle. Suppose that we now change the size of the system 
without changing p: n(p) stays constant and /5 decreases, according to 
(4.1). One is moving on a line p =const.  in the/~, p plane. So doing, one 
reaches the terminal point C of the curve corresponding to a size L = 
1 /2 (a -  b) p, as given by Eq. (4.3). Again, at this point the stable solution 
becomes the homogeneous one. L appears as the maximal allowed size for 
this value of p. 

In conclusion, according to Eqs. (4.3), (4.4), when the system size Lx 
goes to infinity, the terminal point (/5c, j c /2 (  a - b)) of the stable branch of 
the inhomogeneous solution goes to zero, whereas the other terminal point 
(/5o, J n / 2 ( a - b ) )  goes to (1/4, 1/8). In other terms, in the limit of an 
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infinite size, for any density/5 t>0 (and less than 1/2), the system possesses 
an inhomogeneous stationary state. This state is reached if the system is 
prepared in an inhomogeneous initial condition. We nevertheless inherit of 
a familiar pathology of the mean-field formalism: since there is no unique 
stationary state in the thermodynamic limit, the inhomogeneous and 
homogeneous phases coexist in this limit. It would be interesting to know 
the relative sizes of the basins of attraction of these two phases, but we 
made no attempt in this direction. 

5. FINITE-SIZE EFFECTS AND SCALING IN 
M O N T E  CARLO S I M U L A T I O N S  

The method we used for Monte Carlo simulations follows closely the 
definition of the dynamics given in Section 1. At each step of the simula- 
tion, one of the sites of the lattice is chosen at random. If the site is 
occupied, one of its nearest neighbor sites is chosen according to the 
following rule. Each of the sites in the preferred direction of the particle (in 
the direction of the field for the positive particles, and against the field for 
the negative particles) is chosen with probability el2, while the nearest 
neighbor sites in the opposite direction are chosen with probability b/2 
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Phase Segregation in 2D Asymmetric Exclusion Model 1147 

12 

io 

8 

Q-- 6 v 

4 

- -  M.F. (a-b=.8) 
, m o 

�9 L(a-b):8 
-'~. �9 L(a-bl= 12 

- ~ . .  o L(a-b)=16 

0 1 I 

-12 -10 -8 -6 -4 -2 0 
in p 

Fig. 8. (Continued) 

(a + b = 1 ). If the neighbor site selected is empty, the particle is moved from 
its current site to the chosen site. 

We take as time step one Monte Carlo step per site, i.e., the time in 
which each site has been selected once, on average. At each time step, the 
current of positive particles is calculated as 

1 
j+  = (n> - n < )  (5.1) 

LxL.,. 

where n> is the number of positive particles which moved with the field, 
and n< against the field, in the time step. Simulations were run, in general, 
for 105 time steps. Half this time was taken to allow the system to reach 
the steady state. This was ensured by checking that the current had settled 
down. Then a measure of the steady-state current was obtained by aver- 
aging it over the remaining time. We observed that the results were only 
weakly dependent on L,,. Simulations were run with L:. = 20. 

Since the dynamics is Markovian and ergodic, it is ensured that the 
system has a unique stationary state, as long as its size is finite. This was 
checked by running the simulations from two different initial conditions. 
The homogeneous one corresponds to placing particles at random on the 
lattice, the inhomogeneous one to preparing the system in a blocked state. 
While for generic densities the two initial conditions agreed to a high 

822/76/5-6-4 
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precision, metastability effects were noticed close to the transition for the 
larger lattice sizes, even when performing longer runs of 106 time steps. Let 
us denote by f t  the terminal point--for  Lx fixed--on the inhomogeneous 
branch of the current~lensity curve when starting from an inhomogeneous 
initial condition, and fin when starting from a homogeneous one. 
Metastability is reflected by the fact that Pn < Pt. These points move to the 
left when Lx increases. Figure 7 shows the current-density curves obtained 
when starting from a homogeneous initial condition, for a - b = 0.4 and for 
different sizes. For these sizes, this figure is almost indistinguishable from 
that obtained when starting from an inhomogeneous initial condition. 

In order to check the scaling behavior of the system we plotted the 
function f ( p )  defined above. Figures 8a-8c show this function for different 
values of the field: a - b = 0.2, 0.4, 0.8, together with the corresponding dis- 
crete mean-field one. Since we investigate the behavior of the system in the 
thermodynamic limit, the scaling region of interest is L large, i.e., small 
currents. In this region we observe a striking agreement between the 
logarithmic prediction of mean-field theory and the Monte Carlo data. 
Note also the increasing agreement between the Monte Carlo curves and 
the mean-field ones when the field increases. 

Thus it appears that finite-size effects obey the same mechanism as in 
mean field. It is therefore reasonable to assume that the points P,v and f t  

1.0 

0.8 

~ q 

~ o.~ --t- 

0 . . . . . .  

-2{ -10 0 10 20 

2 ( a - b ) x  

Fig. 9. Density profiles p, m, and p + m, obtained by Monte Carlo simulations for a - b = 0.4, 
L~=40,  and /~=0.25 [ f ( p ) ~ 8 ] ,  plotted against 2 ( a - b ) x .  For comparison, the discrete 
mean-field profiles with a -  b = 0.4 and p = 0.00078 [ f ( p ) ~  8] are plotted (continuous line). 



Phase Segregation in 2D Asymmetric Exclusion Model 1149 

are driven to zero when L--* ~ .  We are thus led to the following conclu- 
sion: in the thermodynamic limit, for any finite density ~ the only existing 
phase is inhomogeneous. In the formal limit ~ = 0 ,  the inhomogeneous 
phase may coexist with a homogeneous one. 

We finally show in Fig. 9 the density profiles in the steady state 
obtained by Monte Carlo simulations for a - b = 0.4, Lx = 40, and ~ = 0.25. 
These values lead to j / (a-b)= 0.00043, hence J(p).~ 8. They are in close 
agreement with the discrete mean-field profiles for the same f(p), corre- 
sponding to p =0.00078. In order to obtain these profiles, we had to 
overcome the following difficulty. In the steady state any position of the 
blockage is equally likely. Hence, if the density profile measured from a 
fixed origin on the lattice is averaged over an infinite time, it is found fiat. 
We solved the problem by choosing a moving origin for the density profile, 
placed at each time step at the center of mass of all the particles in the 
system. 

6. D I S C U S S I O N  A N D  C O N C L U S I O N  

In this paper we aimed to understand the structure of the stationary 
states of an asymmetric exclusion model with two species. Mean-field 
theory and Monte Carlo simulations led us to the conclusion that at any 
finite density the only relevant stationary state is inhomogeneous. As a 
consequence, the transition observed in ref. 6 disappears in the thermo- 
dynamic limit. 

The existence of an inhomogeneous phase in the thermodynamic limit 
is relatively intuitive, as is shown by the following argument. Suppose the 
system is prepared in a blocked configuration. Then, in the thermodynamic 
limit, even in the limit of zero density (i.e., with a strip of particles whose 
thickness increases slowly with the system size), it will take an infinite time 
for the system to escape such a configuration and reach a homogeneous 
phase. The analysis done in this paper indicates that a logarithmic increase 
of the thickness with the size ensures a blockage down to zero density. 

In the inhomogeneous phase, there is a good quantitative agreement 
between the behavior of the real system and that of its mean-field version. 
This indicates that correlations should be weak in this phase. Indeed it is 
intuitive that in the blocking strip the moving particles are holes far apart 
from each other, hence mostly independent, whereas in the outer region the 
same is true for particles. This agreement should not be so good in the 
homogeneous phase, since correlations are expected to be stronger. This is 
actually observed on the currents measured for each finite size. However, 
by considering a mean-field approximation of the system at the pair level, 
the currents thus obtained were closer to the currents found in Monte 
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Carlo simulations. Calculations are unfortunately heavy, so we did not 
include them here. 

There is always a nonzero current in the steady state of the mean-field 
equations considered here as long as the size is finite. Yet, in the actual 
one-dimensional model whose mean-field description is given by these 
equations, the current is zero at any density and for any size Lx. We 
investigated whether other one-dimensional models for two species with 
exclusion could lead to segregation effects. In the cases we considered, this 
effect never appeared. Note that the phenomenon of segregation is a lattice 
effect which should be present even in higher dimensions, whereas two 
charged fluids would not block each other. 

One would wish to have a better understanding of a number of points 
on this problem. In particular the stability of the inhomogeneous phase is 
not done analytically in this paper. We have not tried to measure the sizes 
of the basins of attraction of the two phases in competition. Neither did we 
study the possibility of localized steady-state solutions with more than one 
strip. One would also like to have a general mathematical proof of the dis- 
appearance of the transition in the thermodynamic limit. Note that the 
condition of low fields used to derive analytical mean-field solutions in the 
continuum limit is not a drawback from a physical point of view. Indeed, 
if the system already experiences a blockage at low fields it will a f o r t i o r i  

do so for higher fields. In the limit of zero field the two species of particles 
degenerate into a single one. Conversely, the limit of infinite field, or a = 1, 
would be interesting to consider as a starting point for analytical study. 
Finally, it is worth pointing out the similarity of the questions raised in this 
work with those analyzed in ref. 12. 
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